
Tutorial manual unpacking !EP 1.4
*--
|--
Tutorial manual unpacking !EP 1.4
*------------------------ By EvOlUtIoN --

OK boys, now i'll explain how to unpack this simple protector.

Tools:

- Ollydbg 1.10 + ollydump plugin + IsDebug&ExtraHide plugin
- Imprec 1.6 final
- PeID 0.94 or RDG Packer Detector
- LordPE (not really necessary)

Target: UnPackMe_!EP(EXE Pack)1.4.exe from Tuts4you

*-------------
| Unpacking:
*-------------

Open ollydbg and set the IsDebug&ExtraHide plugin with both AutoHide and AutoExtra options
enabled, then save.
Open the target protected file with ollydbg and run it with f9, the program should start
normally so there are no very strong anti-debug protections ;-)
Now we have to look deeper the packer because of a strange thing...sometimes the packer close
itself when program starts, sometimes program starts directly in the same process of the
packer.
This is not a big problem but it's easier to find the OEP when the proggy starts directly, so
it's better to understand how to force this thing.
Naturally when the packer close itself create a new process in order to start the program, and
the simplest way to do it is to call "CreateProcess"...so restart program and put a bp on this
API (naturally not all times this call occurs so may be necessary to restart program 1 or 2
times).
When debugger breaks on "CreateProcess" look for the return address in the stack, in our case
is 004B3689, go there.
Now you can see this code:

004B367F 85C0 TEST EAX,EAX
004B3681 0F84 FB010000 JE UnPackMe.004B3882
004B3687 FFD0 CALL EAX <--- call to CreateProcess
004B3689 8B9D EE020000 MOV EBX,DWORD PTR SS:[EBP+2EE]

It is obviuos what we have to do, put an hardware breakpoint on 004b3681 and restart. When
debugger stops change JE 004B3882 with JMP 004B3882, now press f9 until the program starts.
Ok, we know how to load the program directly from the packer avoiding "CreateProcess", but we
still don't know the entry point of the program.
For me the faster way to reach OEP is to break on the first API of the program, but to do it
is necessary to recognise the original compiler, so run program in debugger (using the
modified jump ;-)) and make a raw dump with ollydump, set the OEP to 1000h. Analyzing the
dump with PeID or RDG Packer Detector we are sure that original compiler is "Borland Delphi
6.0 - 7.0".
Now we are ready to break on the first API called, but what is it? I know that all Dephi
programs start with the same structure and the first API is always "GetModuleHandleA", but if
you don't know it there is no problem, the only thing to do is to look an unpacked program
written with the same language to understand the EP structure.

code at EP (delhpi program)

PUSH EBP
MOV EBP, ESP
ADD ESP, byte
<----------> here can be nothing, or some commands but it is not important
MOV EAX, dword
CALL sysinit::initexe ---> important function that contains call to GetModuleHandleA
MOV EBX, dword2
MOV EAX, dword3

Page 1

Tutorial manual unpacking !EP 1.4
...
...

this is a normal sysinit::initexe

PUSH EBX
MOV EBX,EAX
XOR EAX,EAX
MOV dword,EAX
PUSH 0
CALL <JMP.&kernel32.GetModuleHandleA> <--- we should find this instruction
MOV dword,EAX
MOV EAX,dword

Restart program and when olly stops on the JE, modify it in JMP.
Put a conditional breakpoint on GetModuleHandleA with the condition [ESP+4]==0, this because
GetModuleHandleA is used a lot of time from dll's and if we don't use a condition the debugger
will stop every time...so to save time is better to stop when the pModule paramenter in the
stack is seto to 0 (takes the current process handle, if you don't understand why look deeper
to a delphi example file to get it more clear).
Run the program, debugger will stop and the stack should be like this:

0012FBAC 00406BD5 /CALL to GetModuleHandleA from UnPackMe.00406BD0
0012FBB0 00000000 \pModule = NULL

Return address of the function is 00406bd5, go there because we have to know where sysinit
start, you will find this code:

00406BC4 . 53 PUSH EBX
00406BC5 . 8BD8 MOV EBX,EAX
00406BC7 . 33C0 XOR EAX,EAX
00406BC9 . A3 10874900 MOV DWORD PTR DS:[498710],EAX
00406BCE . 6A 00 PUSH 0 ; /pModule = NULL
00406BD0 . E8 2BFFFFFF CALL UnPackMe.00406B00 ; \GetModuleHandleA
00406BD5 . A3 18874900 MOV DWORD PTR DS:[498718],EAX
00406BDA . A1 18874900 MOV EAX,DWORD PTR DS:[498718]
00406BDF . A3 90604900 MOV DWORD PTR DS:[496090],EAX

Ok boys ;-) this is good and we are very close to OEP! To find it completely remove analysis
(if resent) from the code we only have to search for the command CALL 00406BC4 (direct call to
sysinit), you will find it at 004958F8 like this:

004958EB 0055 8B ADD BYTE PTR SS:[EBP-75],DL
004958EE EC IN AL,DX ; I/O command
004958EF 83C4 F0 ADD ESP,-10
004958F2 53 PUSH EBX
004958F3 B8 84564900 MOV EAX,UnPackMe.00495684
004958F8 E8 C712F7FF CALL UnPackMe.00406BC4
004958FD 8B1D D8744900 MOV EBX,DWORD PTR DS:[4974D8] ; UnPackMe.00498C34
00495903 8B03 MOV EAX,DWORD PTR DS:[EBX]

GOOD! It is very very similar to a delphi EP, and in fact it is...you cannot find PUSH EBP but
it's only an analisys problem, and it is at 004958EC.
Now we can do a clean dump from OEP, so set a new origin on 004958EC and make a dump with
ollydump.
Fire up Imprec in order to rebuild the imports, load the process and set 958EC as OEP. Press
IAT AutoSearch and Get Imports and...WOW all the import table is correct and no calls are
emulated or invalid!
The only thing to do is now to press Fix Dump and we get a functional unpacked file! :-D
If you want is possible to rebuild PE to save disk space and remove ollydump section, but it
is not necessary.

comments: !EP is not a good protector, unpacking is simple and the packer doesn't have OEP
protection and imports destroy features, also debugger detection is not so strong...this means
that our work is very easy with this packer! :-)

Finally...happy unpacking!

Page 2

Tutorial manual unpacking !EP 1.4
Best regards,

EvOlUtIoN

*---------
|The end
*---------

Page 3

